Acumuladores de agua para placas solares

acumulador solar (generador) primeras pruebas de carga solar

Las plantas de energía solar, ya sea la energía solar de concentración (CSP) o los sistemas fotovoltaicos (PV), ofrecen una generación de electricidad libre de contaminación con impactos en las fuentes de agua locales que son comparables y a menudo menores que la generación tradicional de combustibles fósiles.
Las necesidades de agua de las centrales solares dependen de la tecnología y de las condiciones climáticas del lugar. En general, todas las tecnologías de energía solar utilizan una modesta cantidad de agua (aproximadamente 20 galones por megavatio hora, o gal/MWh ) para la limpieza de las superficies de captación y reflexión solar, como los espejos, los heliostatos y los paneles fotovoltaicos (PV). A modo de comparación, una familia típica utiliza unos 20.000 galones de agua al año, más que la cantidad de agua necesaria por MW de capacidad de generación fotovoltaica.
En todas las centrales térmicas, ya sean fósiles, nucleares o de concentración solar, el calor se utiliza para hervir el agua y convertirla en vapor, que hace funcionar una turbina de vapor para generar electricidad.    El vapor de escape del generador debe enfriarse antes de volver a calentarse y convertirse en vapor.

factorio: cómo ajustar el vapor a la energía de reserva – tutorial del circuito

La proporción anterior se puede calcular a partir de la información disponible en el juego: Una caldera consume 1,8MW de combustible y produce energía almacenada en vapor con una eficiencia del 100%. Una máquina de vapor consume 900kW de energía almacenada en vapor, por lo que cada caldera puede alimentar 2 máquinas de vapor: 1,8MW ÷ 0,9MW = 2. Una máquina de vapor consume 30 unidades de vapor por segundo, y una bomba de alta mar produce 1200 unidades de agua por segundo, por lo que cada bomba de alta mar produce suficiente agua para abastecer a 40 máquinas de vapor: 1200 unidades/s ÷ 30 unidades/s = 40. El número de calderas puede derivarse del número de máquinas de vapor: 40 ÷ 2 = 20. Esto produce la relación 1:20:40.
La proporción óptima es de 0,84 (21:25) acumuladores por panel solar, y 23,8 paneles solares por megavatio que necesita tu fábrica (esta proporción tiene en cuenta los paneles solares necesarios para cargar los acumuladores). Esto significa que se necesitan 1,428 MW de producción (de paneles solares) y 100MJ de almacenamiento para proporcionar 1 MW de energía durante un ciclo día-noche.
Una proporción “suficiente” es de 20:24:1 entre acumuladores y paneles solares y megavatios necesarios (por ejemplo, una fábrica que necesite 10 MW puede ser alimentada aproximadamente en su totalidad, día y noche, por 200 acumuladores y 240 paneles solares; esta aproximación sólo difiere de la óptima en que requiere 20 paneles solares más, lo cual es insignificante, pero recuerda que la diferencia entre la proporción “suficiente” y la óptima aumenta a medida que se añaden más paneles solares).

expansión térmica: energía renovable infinita al principio del juego

La proporción anterior puede calcularse a partir de la información disponible en el juego: Una caldera consume 1,8MW de combustible y produce energía almacenada en vapor con un rendimiento del 100%. Una máquina de vapor consume 900kW de energía almacenada en vapor, por lo que cada caldera puede abastecer a 2 máquinas de vapor: 1,8MW ÷ 0,9MW = 2. Una máquina de vapor consume 30 unidades de vapor por segundo, y una bomba de alta mar produce 1200 unidades de agua por segundo, por lo que cada bomba de alta mar produce suficiente agua para abastecer a 40 máquinas de vapor: 1200 unidades/s ÷ 30 unidades/s = 40. El número de calderas puede derivarse del número de máquinas de vapor: 40 ÷ 2 = 20. Esto produce la relación 1:20:40.
La proporción óptima es de 0,84 (21:25) acumuladores por panel solar, y 23,8 paneles solares por megavatio que necesita tu fábrica (esta proporción tiene en cuenta los paneles solares necesarios para cargar los acumuladores). Esto significa que se necesitan 1,428 MW de producción (de paneles solares) y 100MJ de almacenamiento para proporcionar 1 MW de energía durante un ciclo día-noche.
Una proporción “suficiente” es de 20:24:1 entre acumuladores y paneles solares y megavatios necesarios (por ejemplo, una fábrica que necesite 10 MW puede ser alimentada aproximadamente en su totalidad, día y noche, por 200 acumuladores y 240 paneles solares; esta aproximación sólo difiere de la óptima en que requiere 20 paneles solares más, lo cual es insignificante, pero recuerda que la diferencia entre la proporción “suficiente” y la óptima aumenta a medida que se añaden más paneles solares).

gestión de la energía del juego temprano a la megabase | factorio

La proporción anterior se puede calcular a partir de la información disponible en el juego: Una caldera consume 1,8MW de combustible y produce energía almacenada en vapor con una eficiencia del 100%. Una máquina de vapor consume 900kW de energía almacenada en vapor, por lo que cada caldera puede alimentar 2 máquinas de vapor: 1,8MW ÷ 0,9MW = 2. Una máquina de vapor consume 30 unidades de vapor por segundo, y una bomba de alta mar produce 1200 unidades de agua por segundo, por lo que cada bomba de alta mar produce suficiente agua para abastecer a 40 máquinas de vapor: 1200 unidades/s ÷ 30 unidades/s = 40. El número de calderas puede derivarse del número de máquinas de vapor: 40 ÷ 2 = 20. Esto produce la relación 1:20:40.
La proporción óptima es de 0,84 (21:25) acumuladores por panel solar, y 23,8 paneles solares por megavatio que necesita tu fábrica (esta proporción tiene en cuenta los paneles solares necesarios para cargar los acumuladores). Esto significa que se necesitan 1,428 MW de producción (de paneles solares) y 100MJ de almacenamiento para proporcionar 1 MW de energía durante un ciclo día-noche.
Una proporción “suficiente” es de 20:24:1 entre acumuladores y paneles solares y megavatios necesarios (por ejemplo, una fábrica que necesite 10 MW puede ser alimentada aproximadamente en su totalidad, día y noche, por 200 acumuladores y 240 paneles solares; esta aproximación sólo difiere de la óptima en que requiere 20 paneles solares más, lo cual es insignificante, pero recuerda que la diferencia entre la proporción “suficiente” y la óptima aumenta a medida que se añaden más paneles solares).